Sains Malaysiana 53(3)(2024): 719-731

http://doi.org/10.17576/jsm-2024-5303-18

 

Mathematical Modelling of a Rumour Spreading with the Attitude of Adjusting Mechanisms

(Pemodelan Matematik bagi Penyebaran Khabar Angin dengan Mekanisme Penyesuaian Sikap)

 

NORHAYATI ROSLI1,2,*, MUHAMMAD FAHMI AHMAD ZUBER1 & ALI TURAB3

 

1Centre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia

2Centre of Excellence for Artificial Intelligence & Data Science, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia

3School of Software, Northwestern Polytechnical University, Xian, Shaanxi, 710072, China

 

Diserahkan: 28 September 2023/Diterima: 15 Februari2024

 

Abstract

With the advent of the internet, social media of Facebook and Twitter, as well as the communication technology of WhatsApp and Telegram, the speed and scope of the rumour dissemination has been expanded. Understanding the characterization of rumour dissemination and how it spreads can help in mitigation measures to avoid the spread of the rumour. Therefore, it is crucial to propose a mathematical model, and in particular this paper is concerned with the epidemic model to understand the dissemination of the rumour in social network. The mechanism of rumour propagation is behaving like infectious diseases spread; hence this research adopted the epidemiological model approach. In this network, the compartment is divided into susceptible, ignorant, propagation and stiflers. The basic influence number, the equilibrium points of rumour-free and the endemic equilibrium state were obtained and discussed. For the local stability, the Next Generation Matrix was used. Numerical simulation is performed to understand the dynamics of the spread of rumour in a population or social networks, its impact in a population, and adjusting mechanisms in curbing the spread of rumour.

 

Keywords: Adjusting mechanism; mathematical model; rumour spreading; stability

 

Abstrak

Dengan kemunculan internet, media sosial seperti Facebook dan Twitter, serta teknologi komunikasi seperti WhatsApp dan Telegram, penyebaran khabar angin tersebar meluas dan berlaku dengan pantas. Memahami ciri penyebaran khabar angin dan bagaimana ia merebak dapat membantu dalam langkah mitigasi untuk mengawal penyebarannya. Oleh itu, penting untuk mencadangkan model matematik dan kajian ini membincangkan model epidemik untuk memahami penyebaran khabar angin dalam rangkaian media sosial. Mekanisme penyebaran khabar angin berperilaku seperti penyebaran penyakit berjangkit; oleh itu, penyelidikan ini mengambil pendekatan model epidemiologi. Dalam rangkaian ini, kompartmen dibahagikan kepada populasi rentan, populasi yang tidak ambil tahu dan populasi penyebar dan populasi penghalang. Nombor pengaruh asas, titik keseimbangan tanpa khabar angin dan keadaan keseimbangan endemik diperoleh dan dibincangkan. Untuk kestabilan tempatan, Matriks Generasi Seterusnya digunakan. Simulasi berangka dijalankan untuk memahami dinamik penyebaran khabar angin dalam populasi atau rangkaian sosial, kesannya dalam populasi dan mekanisme penyesuaian dalam mengekang penyebaran khabar angin.

 

Kata kunci: Mekanisme perubahan; model matematik; penyebaran khabar angin; stabiliti

 

RUJUKAN

Al-Tuwairqi, S., Al-Sheikh, S. & Al-Amoudi, R. 2015. Qualitative analysis of a rumor transmission model with incubation mechanism. Open Access Library Journal 02: 1-12.

Chen, G.H. 2019. ILSCR rumor spreading model to discuss the control of rumor spreading in emergency. Physica A: Statistical Mechanics and its Applications 522: 88-97.

Daley, D. & Kendall, D. 1964. Epidemics and rumours. Nature 204(4963): 1118.

Fahmi, M., Norhayati, R. & Noryanti, M. 2021. The transmission dynamic of the COVID 19 outbreak: A predictive dashboard. Sains Malaysiana 50(11): 3439-3453.

Li, D. & Ma, J. 2017. How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks. Physica A 469: 284-292.

Li, M., Zhang, H., Georgescu, P. & Li, T. 2021. The stochastic evolution of a rumor spreading model with two distinct spread inhibiting and attitude adjusting mechanisms in a homogeneous social network. Physica A: Statistical Mechanics and Its Application 562: 125321.

Maki, D.P. & Thompson, M. 1973. Mathematical Models and Application: With Emphasis on the Social, Life and Management Sciences. Englewood Cliffs, New Jersey: Prentice-Hall.

Xia, L.L., Jiang, G.P., Song, R. & Song, Y.R. 2015. Rumor spreading model considering hesitating mechanism in complex social networks. Physica A 437: 295-303.

Zan, Y., Wu, J., Li, P. & Yu, Q. 2014. SICR rumor spreading model in complex networks: Counterattack and self-resistance. Physica A: Statistical Mechanics and its Applications 405: 159-170.

Zanette, D. 2001. Critical behavior of propagation on small-world networks. Physical Review E 64: 050901.

Zhang, Y. & Xu, J. 2015. A rumor spreading model considering the cumulative effects of memory. Discrete Dynamics in Nature and Society 2015: 204395.

Zhao, L., Qiu, X., Wang, X. & Wang, J. 2013. Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks. Physica A 392: 987-994.

Zhao, X. & Wang, J. 2014. Dynamical behaviors of rumor spreading model with control measures. Abstract and Applied Analysis 2014: 247359.

Zhou, Y., Zhang, J., Zhu, C. & Wang, H. 2022. Modelling and analysis of rumour propagation based on stochastic optimal control. Alexandria Engineering Journal 61(12): 12869-12880.

 

*Pengarang untuk surat-menyurat; email: norhayati@umpsa.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya